Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Sustainability ; 15(11):8786, 2023.
Article in English | ProQuest Central | ID: covidwho-20243992

ABSTRACT

In December 2019, a novel coronavirus broke out in Wuhan City, Hubei Province, and, as the center of the coronavirus disease 2019 (COVID-19) epidemic, the economy and production throughout Hubei Province suffered huge temporary impacts. Based on the input–output and industrial pollution emissions data of 33 industrial industries in Hubei from 2010 to 2019, this article uses the non-parametric frontier analysis method to calculate the potential production losses and compliance costs caused by environmental regulations in Hubei's industrial sector by year and industry. Research has found that the environmental technology efficiency of the industrial sector in Hubei is showing a trend of increasing year-on-year, but the overall efficiency level is still not high, and there is great room for improvement. The calculation results with and without environmental regulatory constraints indicate that, generally, production losses and compliance costs may be encountered in the industrial sector in Hubei, and there are significant differences by industry. The potential production losses and compliance costs in pollution-intensive industries are higher than those in clean production industries. On this basis, we propose relevant policy recommendations to improve the technological efficiency of Hubei's industrial environment, in order to promote the high-quality development of Hubei's industry in the post-epidemic era.

2.
Sustainability ; 15(11):9087, 2023.
Article in English | ProQuest Central | ID: covidwho-20238774

ABSTRACT

Plastic pollution is recognized as one of the most urgent global environmental concerns. China is the top producer and consumer of plastics and creates the most plastic waste globally. To evaluate policy options to control plastic pollution in China, we first reviewed the relevant policies and action plans in place. Then, we examined plastic-material flows and changes at the national level based on officially published data to evaluate the current situation and efficacy of policies at the macro-level. Results showed that 2016, the start of the 13th Five-Year Plan, was a pivotal year in the history of China's plastic policies tackling plastic issues nationally and internationally. Since 2016, the growth trend in the production and consumption of plastic products has slowed and the recycling rate has risen, surpassing 30% in 2021. To further tackle plastic pollution, key suggestions with important policy implications were provided, covering better integration of policies, the combined management of vertical–horizontal governance, tracking-system implementation, the introduction of a quality-certification system, the development of behaviour-based consumer-oriented solutions, the promotion of stakeholder collaboration, and the need for appropriate post-COVID-19 policies.

3.
Atmospheric Chemistry and Physics ; 23(11):6217-6240, 2023.
Article in English | ProQuest Central | ID: covidwho-20238090

ABSTRACT

The unprecedented lockdown of human activities during the COVID-19 pandemic has significantly influenced social life in China. However, understanding the impact of this unique event on the emissions of different species is still insufficient, prohibiting the proper assessment of the environmental impacts of COVID-19 restrictions. Here we developed a multi-air-pollutant inversion system to simultaneously estimate the emissions of NOx, SO2, CO, PM2.5 and PM10 in China during COVID-19 restrictions with high temporal (daily) and horizontal (15 km) resolutions. Subsequently, contributions of emission changes versus meteorological variations during the COVID-19 lockdown were separated and quantified. The results demonstrated that the inversion system effectively reproduced the actual emission variations in multi-air pollutants in China during different periods of COVID-19 lockdown, which indicate that the lockdown is largely a nationwide road traffic control measure with NOx emissions decreasing substantially by ∼40 %. However, emissions of other air pollutants were found to only decrease by∼10% because power generation and heavy industrial processes were not halted during lockdown, and residential activities may actually have increased due to the stay-at-home orders. Consequently, although obvious reductions of PM2.5 concentrations occurred over the North China Plain (NCP) during the lockdown period, the emission change only accounted for 8.6 % of PM2.5 reductions and even led to substantial increases in O3. The meteorological variation instead dominated the changes in PM2.5 concentrations over the NCP, which contributed 90 % of the PM2.5 reductions over most parts of the NCP region. Meanwhile, our results suggest that the local stagnant meteorological conditions, together with inefficient reductions of PM2.5 emissions, were the main drivers of the unexpected PM2.5 pollution in Beijing during the lockdown period. These results highlighted that traffic control as a separate pollution control measure has limited effects on the coordinated control of O3 and PM2.5 concentrations under current complex air pollution conditions in China. More comprehensive and balanced regulations for multiple precursors from different sectors are required to address O3 and PM2.5 pollution in China.

4.
Atmospheric Environment ; 306 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20237416

ABSTRACT

The additional impact of emission-reduction measures in North China (NC) during autumn and winter on the air quality of downwind regions is an interesting but less addressed topic. The mass concentrations of routine air pollutants, the chemical compositions, and sources of fine particles (PM2.5) for January 2018, 2019, and 2020 at a megacity of Central China were identified, and meteorology-isolated by a machine-learning technique. Their variations were classified according to air mass direction. An unexpectedly sharp increase in emission-related PM2.5 by 22.7% (18.0 mug m-3) and 25.7% (19.4 mug m-3) for air masses from local and NC in 2019 was observed compared to those of 2018. Organic materials exhibited the highest increase in PM2.5 compositions by 6.90 mug m-3 and 6.23 mug m-3 for the air masses from local and NC. PM2.5 source contributions related to emission showed an upsurge from 1.39 mug m-3 (biomass burning) to 24.9 mug m-3 (secondary inorganic aerosol) in 2019 except for industrial processes, while all reduced in 2020. From 2018 to 2020, the emission-related contribution of coal combustion to PM2.5 increased from 10.0% to 19.0% for air masses from the local area. To support the priority natural gas quotas in northern China, additional coal in cities of southern China was consumed, raising related emissions from transportation activities and road dust in urban regions, as well as additional biofuel consumption in suburban or rural regions. All these activities could explain the increased primary PM2.5 and related precursor NO2. This study gave substantial evidence of air pollution control measures impacting the downwind regions and promote the necessity of air pollution joint control across the administration.Copyright © 2023 Elsevier Ltd

5.
Journal of Environmental and Occupational Medicine ; 38(5):494-499, 2021.
Article in Chinese | EMBASE | ID: covidwho-2322258

ABSTRACT

[Background] The coronavirus disease 2019 (COVID-19) was first detected in December 2019. To combat the disease, a series of strict measures were adopted across the country, which led of improved air quality. This provides an opportunity to discuss the impact of human activities on air quality. [Objective] This study investigates the air quality changes in Shijiazhuang, and analyzes the impacts of epidemic prevention and control measures on air quality, so as to provide reference and ideas for further improving air quality and prevention and control measures. [Methods] The air quality data were collected online from https://www.zq12369.com/ and https://aqicn.org/city/shijiazhuang/cn/. Comparisons in air quality index (AQI) and the concentrations of air pollutants (PM2.5, PM10, SO2, CO, NO2, and O3) were made between the period from December 2019 to June 2020 (reference) and the same period from 2016 to 2019 by t-test and chi-square test. [Results] The daily average AQI dropped by 25.38% in Shijiazhuang during the COVID-19 prevention and control compared with the some period from 2016 to 2019 (t=6.28, P < 0.05). The proportions of pollution days during the COVID-19 outbreak in Shijiazhuang were PM2.5 (44.56%), O3 (31.09%), PM10 (23.83%), and NO2 (2.59%) successively, the pollution days of PM10 decreased significantly (chi2=3.86, P < 0.05) compared with 2016-2019, but during traffic lockdown the numbers of pollution days of PM2.5 and in the mid stage of prevention the number of pollution days of O3 increased (P < 0.05). Compared with the control period, the concentrations of the six air pollutants decreased to varying degrees (P < 0.05), especially SO2 dropped by 55.36%. [Conclusion] The measures taken for COVID-19 control and prevention have reduced the pollution sources and emissions, which resulted in better general air quality of Shijiazhuang City, but have aggravated the pollution of O3 and other pollutants. It is necessary to further explore the causes for the aggravation of O3 pollution in order to formulate reasonable air quality control strategies.Copyright © 2021, Shanghai Municipal Center for Disease Control and Prevention. All rights reserved.

6.
Sustainability ; 15(9):7229, 2023.
Article in English | ProQuest Central | ID: covidwho-2320567

ABSTRACT

During the COVID-19 pandemic, panic buying, price inflation, and the pollution of production processes led to economic and social unrest. In response to the current situation, the current research takes less account of the subjective perception of public panic buying and the lack of reference to the reality of effective governance. First, this paper uses prospect theory to portray the public's perceived value of goods in panic buying and non-panic buying situations. Then, drawing on the experience of effective governance in China, a tripartite evolutionary game model of local government, the public and green smart supply chain enterprises is constructed under the reward and punishment mechanism of the central government. Then, this paper analyzes the strategic choices of each game player and the stability of the system equilibrium. The structure of the study suggests the following. (1) Improving local government subsidies and penalties, the cost of positive response and the probability of response can lead to an evolutionary direction where the public chooses not to panic buy and green smart supply chain enterprises choose to ensure a balance between supply and demand and increase pollution control in the production process. (2) Our study yields three effective combinations of evolutionary strategies, of which an ideal combination of evolutionary strategies exists. Non-ideal evolutionary strategy combinations can occur due to improper incentives and penalties of local governments and misallocation of limited resources. However, we find four paths that can transform the non-ideal evolutionary strategy combination into an ideal evolutionary strategy combination. (3) The central government's reward and punishment mechanism is an important tool to stabilize the tripartite strategy, but the central government cannot achieve effective governance by replacing incentives with punishment.

7.
2022 International Conference on Computational Modelling, Simulation and Optimization, ICCMSO 2022 ; : 291-295, 2022.
Article in English | Scopus | ID: covidwho-2320360

ABSTRACT

The Covid-19 Pandemic (C19P) situation of the entire world now affects all fields in terms of Excellencies and let to suffer drastically from normal functioning. The whole world is now concentrating on the protection from the C19 virus in the form of vaccination (C19V) and social distancing (SD). There is a kind enough need arises to maintain the hygiene environment during and after the post C19P situations, and this IoT e-Environment Pollution Monitoring and Controlling System (IEE-PMCS) with 3 parameters (air, water, sound) resolves and addresses the issues in the hygiene maintenance of various environments as common. In the IEE-PMCS proposed work, the 3 measuring parameters and their real-time and current values are percept with the appropriate sensors of IoT elements, and the data are collected and stored on a cloud and are verified with the predefined threshold values of pollution measures with included tolerance values of permissible values to indicate if there is any cause of the pollution on the real-time perceptions. The verification and decision-making of the system is reliable on the new algorithms proposed in this work. This work is based on system modeling and providing an efficient architecture to the maximum extent of the intended purpose, with a detailed description of the flow of operations and with the algorithmic level. © 2022 IEEE.

8.
IOP Conference Series Earth and Environmental Science ; 1169(1):012061, 2023.
Article in English | ProQuest Central | ID: covidwho-2316966

ABSTRACT

The COVID-19 pandemic that began in 2020 has caused various phenomena in some fields of work, especially the phenomenon of remote working. The phenomenon of remote working is possible through the advancement of information and communication technology (ICT). The good impact on the environment, especially air pollution decreasing due to the lack of commuting, makes the phenomenon of remote working need to be enhanced so that the positive impact on the environment increases. This exploratory research found that the work environment factors in the workstation design, including physical ergonomics, lighting, noise, etc., greatly affect the productivity of remote workers. This workstation design is a solution for remote workers during and post-pandemic.

9.
Frontiers in Environmental Science ; 2023.
Article in English | ProQuest Central | ID: covidwho-2316545

ABSTRACT

How to accelerate the clean use of fossil energy and promote the transformation and upgrading of energy structure is an important challenge commonly faced by countries around the world. In the post-Covid-19 era, the uncertainties faced by countries around the world are increasing and the frequency of policy adjustments in various countries is accelerating. The discharge of pollution by enterprises is significantly impacted by environmental regulatory policies. Under the carbon neutrality goal, the uncertainty of environmental policy caused by multiple political factors can directly influence the decisions made by businesses and residents, in turn, affect their confidence and expectations. However, researchers have given limited attention to measuring the environmental policy uncertainty index (EPUI). In this paper, we select 460 newspapers from the China National Knowledge Infrastructure (CNKI) newspaper database from 2001 to 2016 and use the text analysis method to directly construct China's national, provincial, and prefecture-level EPUI. The results show that China's EPUI has obvious stage characteristics and regional characteristics. By applying the Chinese city-level EPUI to the field of urban pollution reduction, we have obtained an important finding that when urban environmental policy uncertainty increases by 1%, urban industrial sulfur dioxide emission decreases by about 0.145%, and carbon dioxide emission decreases by about 0.053%. We believe that this is due to an increase in environmental policy uncertainty inhibiting the development and scaling of secondary industries.

10.
Linye Kexue = Scientia Silvae Sinicae ; 58(11):1, 2022.
Article in Chinese | ProQuest Central | ID: covidwho-2298927

ABSTRACT

Lightning is the main source of natural fire, and lightning fire and other types of forest fires together constitute the global forest fire system. It is generally believed that lightning fire, as a natural fire source, has nothing to do with human beings and is different from man-made fire sources, but in fact, human activities have inextricable links with the occurrence of lightning fire. Since 2019, due to the severe impact of COVID-19 lockdowns, non-essential activities and mobility have decreased, which has led to a significant decrease in pollutant concentrations and lightning. In this paper, we linked the lightning fire with modernization process of human beings, the expansion of habitation, the change of underlying surface, the development of prediction technology and firefighting technology, and the laws and regulations of the country, to explore the impact of human activities on the occurrences of lightning and the forest lightning fire. Lightning is the fire source of the three elements in lightning fire occurrence, the lightning that can cause lightning fire is mainly cloud-to-ground lightning. The human activities in recent decades have profoundly affected the content of aerosols in environment. Aerosols are the main factors affecting lightning, and the large amount of pollution aerosols emitted from urban areas, soot aerosols emitted from biomass combustion and urban heat island effect have all increased the probability of lightning occurrence. The average annual ground lightning density of different land cover types is obviously different, and the construction land has the highest average annual ground lightning density. Intense lightning in forest areas has a higher density and slope. Most of the forests are located in high altitude areas, which is consistent with previous studies showing high lightning frequency in high altitude areas. The lightning in forests is intenser, steeper and more destructive, so forest areas are prone to lightning strikes. Lightning has the characteristic of selective discharge, that is, it will discharge into some special areas, which are also known as lightning selection areas, such as the place groundwater is exposed to the ground, where different conductive soils are connected, and where there are underground metal mines, such as copper and iron mines, and underground lake and water reservoir areas. Lightning strikes are caused by changes in soil conductivity caused by human activities such as mining waste rock sites, reservoir construction on mountain tops, and power transmission lines in mountainous areas. At the same time, due to the abundant trees in the mountainous area, it is also important to avoid the resulting lightning fire. With the development of lightning monitoring technology, a lightning location monitoring system has been established in some areas of China. Especially in 2021, the National Forestry and Grassland Administration launched the "Enlisting and Leading" emergency science and technology project of forest lightning fire prevention and control, and the project team has constructed a lightning fire sensing system in the Daxing'anling region with three-dimensional lightning full-wave detection network as the main body, covering the forest area of the Daxing'anling forest region, which can accurately locate the location of cloud-to-ground lightning in real time, improve the monitoring and warning ability of lightning fires, and improve the efficiency of lightning fire discovery. National laws and regulations indirectly affect lightning fires by affecting forest cover and climate change. This paper is expected to provide reference for the occurrence, prevention and control of forest lightning fire in the future, and provide a basis for the formulation of corresponding policies.

11.
Buildings ; 13(4):921, 2023.
Article in English | ProQuest Central | ID: covidwho-2295831

ABSTRACT

Fluctuating building occupancy during the COVID-19 pandemic contributed to poor water quality and safety conditions in building water distribution systems (BWDSs). Natural disasters, man-made events, or academic institutional calendars (i.e., semesters or holiday breaks) can disrupt building occupant water usage, which typically increases water age within a BWDS. High water age, in turn, is known to propagate poor water quality and safety conditions, which potentially exposes building occupants to waterborne pathogens (e.g., Legionella) associated with respiratory disease or hazardous chemicals (e.g., lead). Other influencing factors are green building design and municipal water supply changes. Regardless of the cause, an increasing number of water management policies require building owners to improve building water management practices. The present study developed a Water Quality and Safety Risk Assessment (WQSRA) tool to address gaps in building water management for academic institutions and school settings. The tool is intended to assist with future implementation of water management programs as the result of pending policies for the built environment. The WQSRA was modeled after water management practices created for controlling water contaminants in healthcare facilities. Yet, a novel WQSRA tool was adapted specifically for educational settings to allow building owners to evaluate risk from water hazards to determine an appropriate level of risk mitigation measures for implementation. An exemplar WQSRA tool is presented for safety, facility, industrial hygiene, and allied professionals to address current gaps in building water management programs. Academic institutions and school settings should examine the WQSRA tool and formulate an organization-specific policy to determine implementation before, during, and after building water-disruptive events associated with natural or man-made disasters.

12.
Atmospheric Environment ; 302 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2295206

ABSTRACT

Acid deposition and particulate matter (PM) pollution have declined considerably in China. Although metal(loid) and acid deposition and PM have many common sources, the changes of metal(loid) deposition in China in the recent decade have not been well explored by using long-term monitoring. Therefore, we analyzed the dry and wet deposition of eleven metal(loid)s (including Al, As, Ba, Cd, Cu, Cr, Fe, Mn, Pb, Sr, and Zn) from 2017 to 2021 at Mount Emei, which is adjacent to the most economic-developed region in western China (Sichuan Basin (SCB)). Anthropogenic emissions contributed to over 80% of the annual wet deposition fluxes of metal(loid)s and acids (SO4 2-, NO3 -, and NH4 +) at Mount Emei, and the major source regions were the SCB, the Yunnan-Guizhou Plateau, and Gansu Province. Metal(loid) and acid deposition had similar seasonal variations with higher wet deposition fluxes in summer but higher wet deposition concentrations and dry fluxes in winter. The seasonal variations were partially associated with higher precipitation but lower pH in summer (968 mm and 5.52, respectively) than in winter (47 mm and 4.73, respectively). From 2017 to 2021, metal(loid) deposition did not decline as substantially as acid deposition (5.6%-30.4%). Both the annual total deposition fluxes and concentrations of Cr, Cu, Sr, Ba, and Pb were even higher in 2020-2021 than in 2017-2018. The inter-annual and seasonal changes implied the responses of metal(loid) deposition to anthropogenic emission changes were buffered (e.g., transformation, dilution, and degradation) by precipitation rates, acidity, natural emissions, and chemical reactions in the atmosphere, among others.Copyright © 2023 Elsevier Ltd

13.
Aerosol and Air Quality Research ; 23(3), 2023.
Article in English | Scopus | ID: covidwho-2277133

ABSTRACT

In response to the COVID-19 pandemic in early 2020, Sri Lanka underwent a nationwide lockdown that limited motor vehicle movement, industrial operations, and human activities. This study analyzes the impact of COVID-19 lockdown on carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM10, PM2.5) concentrations in two urban cities (Colombo and Kandy) in Sri Lanka, by comparison of data from the lockdown period (March to May 2020) with its analogous period of 2019 and 2021. The results showed that the percentage change of daytime PM10, PM2.5, CO, and NO2 concentration during the lockdown in Colombo (Kandy) is –42.3% (–39.5%), –46% (–54.2%), –14.7% (–8.8%) and –82.2% (–80.9%), respectively. In both cities, the response of NO2 to the lockdown was the most sensitive. In contrast, daytime O3 concentration in Colombo (Kandy) has increased by 6.7% (27.2%), suggesting that the increase in O3 concentration was mainly due to a reduction in NOx emissions leading to lower O3 titration by NO. In addition, daytime SO2 concentration in Colombo has increased by 22.9%, while daytime SO2 concentration in Kandy has decreased by –40%. During the lockdown period, human activities were significantly reduced, causing significant reductions in industrial operations and transportation activities, further reducing emissions and improving air quality in two cities. The results of this study offer potential for local authorities to better understand the emission sources, assess the effectiveness of current air pollution control strategies, and form a basis for formulating better environmental policies to improve air quality and human health. © The Author(s).

14.
Frontiers in Environmental Science ; 2023.
Article in English | ProQuest Central | ID: covidwho-2260494

ABSTRACT

Climate change, pollution, drought, and rising seas impede the achievement of the seventh sustainable development goal SDG#7 (i.e. affordable and clean energies).To counter these threats, the use of Renewable Energy (RE) as an alternative to conventional energy has an important role to play in sustainable development. In this context, the purpose of our paper is to investigate the effect of RE deployment on environmental protection in China, The United States of America (USA), and Germany: the top three ranked countries in terms of RE production, according to RENEWABLE 2021 GLOBAL STATUSREPORT. To achieve this objective, the paper adopts a Panel fully modified OLS (FMOLS) method. Results declare that renewable energy significantly reduce pollution indicators;furthermore, we find that Research and development fully moderate this relationship. The findings of this study emphasize the importance of increasing spending on Research and development activities in the RE sector. In addition, the countries studied and countries around the world should pay greater attention to investment in research and development to support the long-term plan for advancing sustainable energy sources for feasible energy and economic development.

15.
Duke Law Journal ; 72(6):1345-1386, 2023.
Article in English | Academic Search Complete | ID: covidwho-2259470

ABSTRACT

Air pollution in U.S. subway systems poses a major threat to public health. People in subway stations breathe in dangerously high levels of dusts, called particulate matter. Current legislation does not effectively address this problem;in fact, the United States does not have a comprehensive indoor air quality law at all. Left unregulated, people regularly exposed to subway air pollution could suffer respiratory and cardiovascular issues and even premature death. To mitigate these health effects, some countries have imposed PM standards in subway systems and underground spaces. Others have standards covering all indoor spaces. In the United States, many subway systems have begun exploring technologies to filter subway air in the wake of the coronavirus pandemic. To support their efforts and innovation, the United States should enact legislation establishing a grant and loan program for subway systems' air-purifying initiatives. Modeled after the successful Diesel Emissions Reduction Act, this law would adopt a carrot-based approach to effectively reduce subway air pollution, allowing each system to tailor initiatives to their unique characteristics. While the United States should explore a mandatory standards-based approach long term, it should prioritize this legislation to protect the public more quickly from this ongoing threat. [ FROM AUTHOR] Copyright of Duke Law Journal is the property of Duke University, School of Law and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

16.
Sustainability ; 15(5):4547, 2023.
Article in English | ProQuest Central | ID: covidwho-2287243

ABSTRACT

The source apportionment of pollutants is the key to preventing and controlling the pollution caused by heavy metals in soils. The aim of this study was to investigate the main sources of heavy metals in the soils of black shale areas in western Zhejiang, China. Based on geostatistical spatial analysis, this research employed positive matrix factorization (PMF) for the source apportionment of heavy metals in paddy soil. The results showed that contaminated arable soils were concentrated in the western and southern study areas. At least five major sources of heavy metals were screened in this study: natural sources (39.66%), traffic emissions (32.85%), industrial emissions (9.23%), agricultural activities (9.17%), and mining (9.10%). To be specific, Cd was mainly from mining;As originated from agricultural inputs such as fertilizers and pesticides;and Hg, as an industrial pollutant, was transported by atmospheric deposition in the study area. The accumulation of Pb, Zn, and Cu was mainly influenced by natural sources and anthropogenic sources, i.e., traffic emissions, while that of Cr and Ni was controlled by natural sources.

17.
Sustainable Development ; 31(2):959-975, 2023.
Article in English | ProQuest Central | ID: covidwho-2281437

ABSTRACT

Due to the COVID‐19 pandemic, governments imposed several mobility restrictions which can be used to evaluate their impact on air quality and generate better‐targeted policies to improve it. Therefore, this study aimed to define sustainable mitigation measures to reduce air pollution based on quantifying the impacts of the restrictions imposed during the COVID‐19 pandemic on air quality in Portugal. Thus, hourly concentrations of PM10, PM2.5, NO2, O3, CO and SO2 were obtained from the Portuguese Air Quality Monitoring Network. Data was then divided into six periods (2020–2021) and compared with the corresponding historical periods (2015–2019). Furthermore, the satellite data of NO2, CO, and absorbing aerosol index (AAI) from the sentinel‐5P TROPOMI was collected to complement the analysis conducted for the monitoring data. Overall, air quality improved in all study periods and areas, except in industrial sites. The satellite data corroborated the results herein achieved and thus validated the real effect of the measures adopted in the country during the pandemic on air quality. Sustainable policies to improve air quality could include remote (or hybrid) work whenever possible as a long‐term measure and prohibition of travelling between municipalities when an extraordinary event of high air pollution is predicted or occurs. Other policies should be adopted for industrial areas. Given this, and as the restrictive mobility measures had a strong effect on reducing air pollution, the post‐COVID era represents an opportunity for society to rethink future mobility and other emerging policies, that should favour softer and cleaner means of transportation.

18.
IOP Conference Series. Earth and Environmental Science ; 1146(1):011001, 2023.
Article in English | ProQuest Central | ID: covidwho-2247386

ABSTRACT

We are pleased to provide you with the proceedings of 2022 4th International Conference on Resources and Environment Sciences (ICRES 2022).The conference was expected to be held during June 10-12, 2022 in Bangkok, Thailand, while the situation of COVID-19 pandemic is unpredictable and unstable. Most of conference participants could not travel to attend the conference venue to do oral presentations. Taking all conditions into consideration, conference committee decided to change physical conference into virtual conference. It was held online by ZOOM application successfully during the same date.The conference was highlighted by four outstanding Keynote Speakers and two invited speakers. Keynote speakers include Prof. Kaimin Shih, The University of Hong Kong, China with his topic "Metal Stabilization and Resource Recovery Examples in Urban Environment”;Prof. Nur Islami, University of Riau, Indonesia who presented a talk on "An Valuable Approach to Study Groundwater Contamination in a Shallow Aquifer System”;Prof. Danny Sutanto, University of Wollongong, Australia who shared a speech on "Solid-State Transformer for Smart Power Grid Applications”;Assoc. Prof. Phebe Ding, Universiti Putra Malaysia, Malaysia who presented a talk about "Role of Postharvest Technology in Producing Quality Fresh Horticultural Produces”. Additionally, two excellent invited speakers, Assoc. Prof. Chunrong Jia from University of Memphis, Tennessee, USA with speech title "Apportioning variability of polycyclic aromatic hydrocarbons (PAHs) in the ambient air in the Memphis Tri-State Area, USA”, and Assoc. Prof. Farhad Shahnia from Murdoch University, Australia with speech title "Recent and Future Research on Microgrid Clusters”.Each normal oral presenter had about 12 Minutes of Presentation and 3 Minutes of Question and Answer. Conference was organized in 5 sessions with various topics: Environmental Management, Waste Utilization and Sustainable Development, Wastewater Treatment, Water Analysis and Hydraulic Engineering, Renewable Energy Technology, Chemical Engineering and Fluid Mechanics, Resources and Environmental Science & Sustainable Development, Energy and Chemical Engineering.All accepted papers presented at the ICRES 2022 were included in this volume, which contained three chapters with topics: (1) Environmental Pollution and Control (2) Waste Management and Utilization (3) Clean Energy and Technology. All papers were subjected to peer-review by conference committee members and international reviewers. The papers were selected based on high quality and high relevancy to the conference scope.We would like to express our sincere gratitude to organizing committee and the volunteers who have dedicated their time and efforts in planning, promoting, and helping the conference. We hope that the readers would gain some valuable knowledge from this effort.List of Committees, Statement of Peer Review are available in this Pdf.

19.
TAO : Terrestrial, Atmospheric and Oceanic Sciences ; 34(1):5, 2023.
Article in English | ProQuest Central | ID: covidwho-2263593

ABSTRACT

Over the past decades, Taiwan has achieved remarkable goals in air pollution reduction with the concentrations of several common air pollutants such as CO, NOx, PM10, PM2.5, and SO2 going down. In contrast to these achievements, the mitigation of O3 remains extremely tough due to the complexity of its formation process involving synergistic effects of precursor reductions and meteorological influences. During the local COVID-19 crises in Taiwan and the Level 3 alert in 2021, air pollutants directly emitted from the traffic such as CO and NOx present clear relationships with the drop of the recorded freeway traffic volume due to the alert, while PM10 and PM2.5 which are also relevant to the traffic do not show indications of being greatly influenced by the decrease of the traffic flow. Although road traffic is not regarded as a main source of SO2 by current understanding, the unusual SO2 variation patterns found in this study suggest a prolonged impact for months from the changes of travel behavior during the epidemic. In contrast, the epidemic did not exert influences on industrial SO2 concentration which accounts for a large portion of total SO2 in Taiwan, and a similar scenario is also seen in each type of O3 monitoring. Although some results discussed in this study are not in line with current consensuses and understandings in terms of the nation of certain air pollutants, these findings may disclose new perspectives which could be a potential benefit to air quality improvement projects in the future.

20.
Environ Sci Pollut Res Int ; 30(17): 50938-50951, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2277621

ABSTRACT

The effectiveness of disposable masks in mitigating the transmission of COVID-19 infection increased the consumption of masks. The cheaper cost and easy accessibility resulted in massive consumption and disposal of non-woven masks. The improper disposal of mask emits microfiber into the environment upon weathering. This research mechanically recycled the disposed-of masks and developed fabric from reclaimed polypropylene (rPP) fibers. Obtained rPP fibers were blended with cotton in different proportions (50/50, 60/40, 70/30 cotton/rPP) to produce rotor-spun yarns and evaluated for their performance. The results of the analysis revealed that the developed blended yarns have enough strength; however, they are inferior to the 100% virgin cotton yarns. Based on its suitability, knitted fabrics were developed from 60/40 cotton/rPP yarn. Along with the physical properties, the microfiber release behavior of the developed fabric was analyzed at its different phases of the lifecycle (wearing, washing, degradation at disposal). The microfiber release was compared with the release characteristics of disposable masks. The results showed that recycled fabrics could release 2.32 microfiber/sq. cm during wearing, 4.91 microfiber/sq. cm in laundry, and 15.50 microfiber/sq. cm at the end-of-life disposal by weathering. In contrast, the mask can release 79.43, 96.07, and 223.66 microfiber/sq. cm, respectively, for use, immediate disposal, and long-term disposal by weathering. Approximately, an 83.17% reduction in the microfiber release was reported when the masks were recycled into fabrics. The compact structure of fabric where the fibers are made into yarn resulted in lesser fiber release. Mechanical recycling of disposable masks is simple, less energy-intensive, less expensive, and can be quickly adopted. However, a 100% elimination of microfiber release was not possible in this method due to the inherent nature of the textiles.


Subject(s)
COVID-19 , Humans , Masks , Textiles
SELECTION OF CITATIONS
SEARCH DETAIL